地区网站:
职位: 专业: 学历: 政治面貌:
您的当前位置:国家公务员考试网 > 贵州 > 行测辅导 > 其他 > 正文

2013贵州公务员考试行测高分策略:赋值法的数学应用

2013-07-09 08:48:08 字号: | | 【 打印 】

  在公务员行测考试中,数学运算部分一直是一个重点和难点,尤其是解题思想的理解与把握,在解题思想中,贵州人事考试信息网(http://gz.chinagwyw.org/)硕文考试研究中心有一个很重要的方法——“赋值法”。赋值法在上课的时候,发现学员在理解“赋值法”的题目当中会有所偏差,即便上课的时候听讲师讲题的时候知道这些题可以用到赋值法来解答,但是在实际的自己解题的时候会陷入茫然,不知道是不是可以用,本文就赋值法在各个题型中的应用情况做一个总结,并归纳出题型判断的一般标志:一般情况下,在题目中出现 的形式,并且在这样的三个量中,至多只出现一个具体量的时候,就可以用“赋值法”解。主要的题型有工程问题,溶液问题,行程问题,经济利润问题等。通过以下的例题来印证:

  “赋值法”最先的引入是在“比例问题”当中,它提及:当题目中没有涉及某个具体的量的大小时候,并且这个具体量的大小并不影响结果的时候,我们运用赋值思想来解,将这个量设为某一个利于计算得数值,从而化简计算。其实在中学阶段的学习当中就已经学习过这个类似的方法,但是那是普遍采用设“1”的思想,把这个量设置为1,当然那样可以把这类题型给解答出来,但是速度上就放慢了很多,举例说明:

  【例1】要折叠一批纸飞机,若甲单独折叠要半个小时完成,乙单独折叠需要45分钟完成。若两人一起折,需要多少分钟完成?()

  A. 10 B. 15

  C. 16 D. 18

  【解析】

  用设x法:

  设置总的工作量为x,根据“工程总量=工作效率×工作时间”得出:甲的效率为x/30.乙的效率为x/45,若两人一起折则是甲乙效率之和:x/30+x/45,同样的根据公式可以得到,时间为:x/(x/30+x/45)=18,答案选D。解题的过程当中有分数的通分、约分,解答占用的大量的时间,另外发现在解的过程当中其实x本身是什么具体的量根本不重要,因为都可以约掉,所以又演变出了设“1”思想。

 

  工程总量 工作时间 工作效率 甲 x 30 x/30 乙 x 45 x/45 甲+乙 x x/(x/30+x/45) x/30+x/45
 

  用设“1”法:

  设置总的工作量为1,根据“工程总量=工作效率×工作时间”得出:甲的效率为1/30.乙的效率为1/45,若两人一起折则是甲乙效率之和:1/30+1/45,同样的根据公式可以得到,时间为:1/(1/30+1/45)=18,但是其实解的过程当中分数的通分、约分仍然存在,解答还是占用的大量的时间。

 

  工程总量 工作时间 工作效率 甲 1 30 1/30 乙 1 45 1/45 甲+乙 1 1/(1/30+1/45) 1/30+1/45
 

  用赋值法:

  根据“工程总量=工作效率×工作时间”,三个变量中具体出现的只有一个变量:工作时间那么可以赋值,设置总的工作量为90(30和45的最小公倍数),得出:甲的效率为3,乙的效率为,2,若两人一起折则是甲乙效率之和:3+2=5,同样的根据公式可以得到,时间为:90÷(3+2)=18,解的过程当中涉及到的都是一些最简单基础的除法,为解题节省了大量的时间。

 

  工程总量 工作时间 工作效率 甲 90 30 3 乙 90 45 2 甲+乙 90 18 5
 

  上面的这道例题可以很明显的看出赋值法在计算中带来的便利但是“赋值法”究竟怎样来进行判断,举一下几个例子来说明在几个重点模块的应用:

  一、“赋值法”在工程问题当中的应用

  【例2】某工程项目,由甲项目公司单独做,需4天才能完成,由乙项目公司单独做,需6天才能完成,甲、乙、丙三个公司共同做2天就可完成,现因交工日期在即,需多公司合作,但甲公司因故退出,则由乙、丙公司合作完成此项目共需多少天?( )

  A.3 B.4

  C.5 D.6

  【解析】根据赋值法题型的判断,题目当中只出现了“天”这一种单位,符合前边总结的赋值法的应用条件,应用赋值法来解。这是总的工作量为4,6,2的最小公倍数:24。根据下表解出乙丙合作完成需要4天,答案选B。

 

  工程总量 工作时间 工作效率 甲 24 4 6 乙 24 6 4 甲+乙+丙 24 2 12 乙+丙 24 4 12-6
 

  【例3】甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程,两项工程同时开工,耗时16天同时结束。问丙队在A工程施工多少天?( )

  A. 6 B. 7

  C. 8 D. 9

  【解析】和上面的题目类似,题目中也只出现了一种单位的具体的量,即“天”,虽然另外也出现了6:5:4这样的数字,但是那个只是一个比例,并不存在一个具体的单位,所以仍然可以用“赋值法”。假设甲乙丙三者的效率分别为6,5,4(这是一个具体的量地假设,而不是一个比例),得出A和B两个工程的工程总量为16×(6+5+4)=240,因为A和B的总量是相同的,所以A和B 均为120。(120-16×6)÷4=6天,答案选A。

  【例4】同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米。若单独打开A管,加满水需2小时40分钟。则B管每分钟进水多少立方米?( )

  A. 6 B. 7

  C. 8 D. 9

  【解析】前两题都是只有出现了一种单位,可以设整了,与前两题不同的是:这题不仅仅出现了一个时间的单位,还出现了一个体积的单位,不符合本文开头的赋值法的条件:只出现一种单位时才能用赋值法。所以这题不能用赋值法。解这题首先同步单位,A和B同时进水,要90分钟,只用A进水要160分钟,且从90分钟A比B多进180立方米得出1分钟A比B多2立方米。因为游泳池的总体积一定,所以时间和进水的速度呈反比,A+B和A的时间之比为9:16,所以A+B和A的效率之比为16:9,得出A和B的效率之比为9:7,从1分钟A比B多2立方米得出,B管每分钟进水7立方米,答案选B。

  更多内容请继续关注 贵州人事考试信息网


关键词:
第一时间了解掌握公职类考试资讯、公告等考情,您可以把公务员考试网Ctrl+D收藏,如有疑问请在线 咨询提问