2013年4.13联考行测中“最值问题”解题攻略
2013年4.13联考行测中“最值问题”解题攻略
随着国考面试的结束,各位考生又迎来了新一轮的考试周期——2013年联考。为了让广大考生能够更好的备考,硕文公务员考试研究中心(ww.chinagwyw.org)为大家支招考试中的“最值问题”,希望能够为备考国考的考生提供帮助。
我们可以发现,最值问题是一个重点题型,必须引起大家的高度重视,要想拿下这个问题,先要明白什么是最值问题。简单的来理解,就是在题目的设问当中出现“最大”“最小”“至多”“至少”等字眼,这样的问题我们都可以统称为最值问题。
那么,对于最值问题我们该如何备考呢?这就要求我们对最值问题进行一个较为全面的归类,只有做好题型的归类,我们才可以针对性的提出解决方案。依据多年的教学经验,我们一般将最值问题分成这样三大题型:一、极端构造;二、反向构造;三、数列构造。接下来硕文公务员考试研究中心将分别进行说明。
一、 极端构造
【例题1】有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源类分别有100、80、70、50人,问至少有多少人找到工作才能保证一定有70名找到工作的人专业相同?(2012年国考题)
A.71 B.119 C.258 D.277
特征:这道题目的典型特点体现在问题中,比如出现“至少……保证”,对于这种题目的解题思想就是要先找到最不利的情况。
解析:对于保证70名找到工作的人专业相同,最不利的情况就是:软件设计类招69个、市场营销类招69个、财务管理类招69个,人力资源类因为只有50个,无论怎么安排都不可能有70人,所以把这50人全部算进去,这个时候对于其他三个专业不论哪一个,只要再招一个人,就可以满足“保证一定有70名找到工作的人专业相同”。
方法:这就是对于极端构造的解题方法:“最不利+1原则”,即:69+69+69+50+1=258,因此答案选择C。
【例题2】从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同?(2007年国考题)
A.21 B.22 C.23 D.24
特征:这道题仍然有典型的标志性词语“保证至少……”。
解析:要满足某一花色下有6张牌,那么按照我们极端构造法,先找到“最不利”情况,按照题意,最不利的情况就是每一个花色下都已经有5张扑克牌,大家都知道扑克牌一共有4种花色,既然每种花色都有20张,那么目前已经有20张扑克牌了,算到这,很多考生就会20+1=21,误选A,这道题和例1的区别就在于,对于扑克牌而言,除了四种花色,还有大小王共两张,所以这道题的答案应该是20+2+1=23,因此选择C。
方法:对于这一类极端构造,扑克牌和其他类型有差异,如果题干明确告知“完整扑克牌”,那么要考虑大小王的情况。
在第一类极端构造题型中,还有一类题【例题3】在公考中很常见,这类题虽然在国考中未曾涉及,但是在历年联考中经常出现,所以考生对这类题应该有所重视。
【例题3】有120名职工投票从甲、乙、丙三人中选举一人为劳模,每人只能投一次,且只能选一个人,得票最多的人当选。统计票数的过程中发现,在前81张票中,甲得21票,乙得25票,丙得35票。在余下的选票中,丙至少再得几张选票就一定能当选?
A.15 B.18 C.21 D.31
特征:对某几个人投票,进行选举,已经得到若干张,问其中某一人还需再得几票就当选?这类题隶属于极端构造,我们称之为投票模型。
解析:对于这道题,要让丙当选,且得票数尽可能少,那么我们来看选项,对于A 选项,我们假设15票全部给丙,那么还剩39-15=24票,这24票不论是全部给甲还是全部给乙,这两人都无法超越丙,说明15符合条件,且又是选项中最小的数值,符合题意,因此选择A。
方法:但是对于这类题,仅仅从选项入手是比较被动的,因为我们先验证哪一个选项对于不同的题目可能就不一样了,因此,对于投票模型我们总结了“三步走”战略:第一步先看让谁当选(丙);第二步谁对丙威胁最大?(乙);第三步,将乙和丙的票数差补齐,乙和丙在剩余的票数中争取多一半就获胜(也就是剩下的39票中需要再给乙10票,这样还剩下29票,29的多一半是15,所以丙再得15票就当选),这就是我们对投票模型的解题思路。
二、 反向构造
【例题4】某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的至少有多少人?( )
A.5人 B.6人 C.7人 D.8人
特征:这种题型的特征体现在问题当中,“都满足某种情况的至少……”。
解析:解决这种问题的方法就是找到题目设问的反面情况,“四道题都对的至少”的反面就是“有错题的人最多”,那么我们先来找出每道题的错题数:第一道题的错题数有10道,第二道题的错题数有18道,第三道题的错题数有4道,第四道题的错题数有7道,因此我们可以得知,全班一共有39道错题,要想让有错题的人最多,那么最多只能39人错。由题干可知,全班一共有45人,如果有39个人有错题,那么说明没错题的人有6个,即6个人全对,因此答案选择B。
方法:对于这类题,我们先找到题干中问题的反面情况,然后对各种情况加总,最后再用总数减去反面的加和,就是我们要的答案。
三、 数列构造
【例题5】100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?( )(2009年国考题)
A. 22 B. 21 C. 24 D. 23
特征:这类题型的特点体现在它的问题中,比如:“体重最轻的人最重是多少”、“得分最少的队伍最多得几分”、“参加比赛人数第四多的项目最多有几人参加”等等。
解析:对于这样的题目我们用的是数列的方式,将参与这七项活动的人数从多到少进行排序:①>②>③>④>⑤>⑥>⑦,题干要求的是“参加人数第四多的活动最多有几个人参加”,即④号,设参加④号的人数为x人,要满足x最多,就要其他六个项目的人数尽可能的少。首先让①、②、③尽可能的少,我们知道,这三项活动的人数都比④多,那么为了满足条件,我们让这三项活动的参加人数个都比④多一点点,这一点点如何确定呢?根据常识人数都是整数,那么①、②、③的人数分别x+3,x+2,x+1也就是分别比第四项多1、2、3个人。其次,我们来看⑤、⑥、⑦这三项活动的参加人数,要让x尽可能的多,那么⑤、⑥、⑦也要尽可能的少,这个时候区别出现了,⑤、⑥、⑦与①、②、③不同,①、②、③比x大,⑤、⑥、⑦比x小,那么对于⑤、⑥、⑦而言,多小是最小呢,不难想象参加这三项活动的人数分别是3、2、1个人。这样就可以列出方程:1+2+3+x+x+1+x+2+x+3=100,求出x=22,因此选择A。
【例题6】某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?
A.89 B.88 C.91 D.90
特征:问题中的“成绩排名第十的人最低考了多少分”?
解析:首先得知不及格的人数是1人,这20个人的分数从1—20号由高到低排序,既然题干问第十名分数,那么假设第十名分数是x,要让x尽可能的低,那么第1名-第9名,以及第11名-第20名分数都要尽可能高。首先来看第1-9名,第1名最高只能100分,逐次递减99、98、97、……、92,这是前9名的分数,再来看第11-20名,已知20人中有1人不及格,所以第20名最高只有59分,从第11-19名分数分别是x-1、x-2、x-3、x-4、x-5、x-6、x-7、x-8、x-9,把上面这20个人的分数相加:100+99+98+……+92+x+(x-1)+(x-2)+……+(x-9)+59=20×88=1760,从中求解x=88.2,所以x=89,因此选择A。
以上是硕文公务员考试研究中心对今年公考数量关系中最值问题所做的总结归类,希望对备考2013年联考的考生有所帮助,祝各位考生顺利走上成“公”之路!
硕文教育 蒲婷婷
海南硕文教育交流学习平台 海南硕文官方网站 海南硕文新浪微博 海南硕文腾讯微博 海南硕文QQ交流群 硕文教育公考论坛 海南硕文新浪博客 海南硕文人人主页 微信号hainanht2012 硕文教育YY8608频道
更多内容请继续关注 海南人事考试网