《行测》数学运算之数的拆分
数学运算中数的拆分问题是公务员考试常考的题型之一,考察对数的基本特性的掌握,通常此类问题都比较灵活。一般来说此类问题整体难度不大,但常用的代入法等将不再实用,故掌握方法就变得特别重要。河南公务员考试网(ww.chinagwyw.org/henan)专家为您介绍几种解析方法:
1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。
【例】20^n是2001*2000*1999*1998*……*3*2*1的因数,自然数n最大可能是多少?
A.499 B.500 C.498 D.501
【解析】20^n=5*2*2的N次方,显然2001*2000*1999*1998*……*3*2*1中,能分解出来的2个个数要远远大于5的个数,所以2001*2000*1999*1998*……*3*2*1中最多能分解多少个5也就是N的最大值,由此计算所求应为【2001÷5】+【2001÷25】+【2001÷125】+【2001÷625】=400+80+16+3=499。
2.已知某几个数的和,求积的最大值型:基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号)推 论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且仅当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。
【例】3个自然数之和为14,它们的的乘积的最大值为( )
A.42 B.84 C.100 D.120
【解析】若使乘积最大,应把14拆分为5+5+4,则积的最大值为5×5×4=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导思想。下面再举一列大家可以自己体会。
3. 排列组合型: 运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的。
【例】 学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?
A.1152 B.384 C.28 D.12
【解析】本题实际上是想把1152分解成两个数的积。1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。
解法二:(用排列组合知识求解)
由1152=27×32,那么现在我们要做的就是把这7个2和2个3分成两部分,当分配好时,那么长方形的长和宽也就固定了。
具体地: 1)当2个3在一起的时候,有8种分配方法(从后面有0个2一直到7个2); 2)当两个3不在一起时,有4种分配方法,分别是一个3后有0,1,2,3个2。故共有8+4=12种。
解法三:若1152=27×32,那么1152的所有乘积为1152因数的个数为(7+1)×(2+1)=24个,每两个一组,故共有24÷2=12组。
下面谈谈如何利用确定“中间数”法解将一个整数分拆成若干个连续数的问题。
那么什么是“中间数”呢?其实这里的“中间数”也就是平均数。有的“中间数”是答数中的一个,如:1、2、3、4、5中的“3”便是;也有的“中间数”是为了解题方便虚拟的,并不是答数中的一个,如:4、5、6、7这四个数的“中间数”即为“5.5”。由此我们可知,奇数个连续自然数的“中间数”是一个整数,而偶数个连续自然数的“中间数”则为小数,并且是某个数的一半。
把一个自然数分拆成指定个数的连续数的和的问题
【例】把2000分成25个连续偶数的和,这25个数分别什么?
【解析】这道题如果一个一个地试,岂不是很麻烦,我们先求中间数:2000÷25=80,那么80的左边有12个数,右边也有12个数,再加上80本身,正好是25个数,我们又知相邻两个偶数相差2,那么这25个偶数中最小的便为:80—12×2=56,最大的为:80+12×2=104,故所求的这25个数为:56、58、……、80、……、102、104。
把一个自然数分拆成若干个自然数的和的形式
【例】84分拆成2个或2个以上连续自然数的和,有几种?分别是多少?
【解析】我们先把84分解质因数,84=2×2×3×7由分解式可以看出,84的不同质因数有2、3、7,这就说明能把84分拆成2、3、7的倍数个不同连续自然数的和,但是我们必须明确,有的个数是不符合要求的,例如把84分拆成2个连续自然数的和,无论如何是办不到的,那么我们不妨把其分拆为3、7、8(2×2×2)个连续自然数的和。
分拆为3个连续自然数的和:(2×2×3×7)÷3=28 ,确定了“中间数”28,再依据例2的方法确定其它数,所以这三个数是27、28、29。
同理,分拆为7个连续自然数的和:(2×2×3×7)÷7=12 ,它们是9、10、11、12、13、14、15。
分拆为8(2×2×2)个连续自然数的和:(2×2×3×7)÷8=10.5 ,它们是7、8、9、10、(10.5)、11、12、13、14。其它情况均不符合要求。
再将此题引伸一步,怎样判断究竟有几种分拆方式呢?就84而言,它有三种分拆方法,下面我们看84的约数有:1、2、3、4、6、7、12、14、21、28、42、84。其中大于1的奇约数恰有三个。于是可以得此结论:若一个整数(0除外)有n个大于1的奇约数,那么这个整数就有n种分拆成2个或2个以上连续自然数的和的方法。
450=2*3*3*5*5,大于1的奇约数为3,5,9,15,25,45,75,225一共8个,则共有8种拆分方法。
公务员教材中心:2013年河南公务员考试复习教材火热销售中
1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。
【例】20^n是2001*2000*1999*1998*……*3*2*1的因数,自然数n最大可能是多少?
A.499 B.500 C.498 D.501
【解析】20^n=5*2*2的N次方,显然2001*2000*1999*1998*……*3*2*1中,能分解出来的2个个数要远远大于5的个数,所以2001*2000*1999*1998*……*3*2*1中最多能分解多少个5也就是N的最大值,由此计算所求应为【2001÷5】+【2001÷25】+【2001÷125】+【2001÷625】=400+80+16+3=499。
2.已知某几个数的和,求积的最大值型:基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号)推 论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且仅当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。
【例】3个自然数之和为14,它们的的乘积的最大值为( )
A.42 B.84 C.100 D.120
【解析】若使乘积最大,应把14拆分为5+5+4,则积的最大值为5×5×4=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导思想。下面再举一列大家可以自己体会。
3. 排列组合型: 运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的。
【例】 学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?
A.1152 B.384 C.28 D.12
【解析】本题实际上是想把1152分解成两个数的积。1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。
解法二:(用排列组合知识求解)
由1152=27×32,那么现在我们要做的就是把这7个2和2个3分成两部分,当分配好时,那么长方形的长和宽也就固定了。
具体地: 1)当2个3在一起的时候,有8种分配方法(从后面有0个2一直到7个2); 2)当两个3不在一起时,有4种分配方法,分别是一个3后有0,1,2,3个2。故共有8+4=12种。
解法三:若1152=27×32,那么1152的所有乘积为1152因数的个数为(7+1)×(2+1)=24个,每两个一组,故共有24÷2=12组。
下面谈谈如何利用确定“中间数”法解将一个整数分拆成若干个连续数的问题。
那么什么是“中间数”呢?其实这里的“中间数”也就是平均数。有的“中间数”是答数中的一个,如:1、2、3、4、5中的“3”便是;也有的“中间数”是为了解题方便虚拟的,并不是答数中的一个,如:4、5、6、7这四个数的“中间数”即为“5.5”。由此我们可知,奇数个连续自然数的“中间数”是一个整数,而偶数个连续自然数的“中间数”则为小数,并且是某个数的一半。
把一个自然数分拆成指定个数的连续数的和的问题
【例】把2000分成25个连续偶数的和,这25个数分别什么?
【解析】这道题如果一个一个地试,岂不是很麻烦,我们先求中间数:2000÷25=80,那么80的左边有12个数,右边也有12个数,再加上80本身,正好是25个数,我们又知相邻两个偶数相差2,那么这25个偶数中最小的便为:80—12×2=56,最大的为:80+12×2=104,故所求的这25个数为:56、58、……、80、……、102、104。
把一个自然数分拆成若干个自然数的和的形式
【例】84分拆成2个或2个以上连续自然数的和,有几种?分别是多少?
【解析】我们先把84分解质因数,84=2×2×3×7由分解式可以看出,84的不同质因数有2、3、7,这就说明能把84分拆成2、3、7的倍数个不同连续自然数的和,但是我们必须明确,有的个数是不符合要求的,例如把84分拆成2个连续自然数的和,无论如何是办不到的,那么我们不妨把其分拆为3、7、8(2×2×2)个连续自然数的和。
分拆为3个连续自然数的和:(2×2×3×7)÷3=28 ,确定了“中间数”28,再依据例2的方法确定其它数,所以这三个数是27、28、29。
同理,分拆为7个连续自然数的和:(2×2×3×7)÷7=12 ,它们是9、10、11、12、13、14、15。
分拆为8(2×2×2)个连续自然数的和:(2×2×3×7)÷8=10.5 ,它们是7、8、9、10、(10.5)、11、12、13、14。其它情况均不符合要求。
再将此题引伸一步,怎样判断究竟有几种分拆方式呢?就84而言,它有三种分拆方法,下面我们看84的约数有:1、2、3、4、6、7、12、14、21、28、42、84。其中大于1的奇约数恰有三个。于是可以得此结论:若一个整数(0除外)有n个大于1的奇约数,那么这个整数就有n种分拆成2个或2个以上连续自然数的和的方法。
450=2*3*3*5*5,大于1的奇约数为3,5,9,15,25,45,75,225一共8个,则共有8种拆分方法。
公务员教材中心:2013年河南公务员考试复习教材火热销售中
关键词:
第一时间了解掌握公职类考试资讯、公告等考情,您可以把公务员考试网Ctrl+D收藏,如有疑问请在线
咨询提问。
相关文章