公务员考试行测之数字推理4种实用解题技巧
◆ 备考方向
1.备考重点:多级数列、分式数列、幂次方数列和递推数列。其中多级数列是最重要、最基础的一种题型,出题时可融合等差数列、等比数列等。
2.基本数列:根式数列、间隔数列、分组数列等在江苏行测中也会出现。
3.拓展数列:质数数列、图形数列是近年来各省地方考试出现较多的题型,考生应该引起重视。
◆ 解题思路
从数列“长相”判定数列规律是做好数字推理的重要方法,其“长相”包括数列的长度、正负号、各项差值大小及变化趋势等。从这些“长相”特征来判断出它属于哪种类型,然后再确定解题方法,这样可以大大提高解题速度和正确率。
1、如果数字呈现递增或递减的变化幅度很大,一般会有多次方出现;如果数字呈现递增或递减的变化幅度不是很大,则有可能为多级数列。
【例1】7,7,9,17,43,( )
A.119 B.117 C.123 D.121
【解析】C。
解法一:这是一个多级等比数列。后一项减去前一项得到0,2,8,26,(80),继续后一项减去前一项得到2,6,18,(54),这是一个公比为3的等比数列。
解法一:这是一个多级等比数列。后一项减去前一项得到0,2,8,26,(80),这是一个幂次方数列,数列各项分别可以写成30-1,31-1,32-1,33-1,(34-1)。
【例2】-3,0,23,252,( )
A.256 B.484 C.3125 D.3121
【解析】D。数列呈现递增变化,且变化幅度比较大,则可能为多次方数列。进一步分析数列三、四两项可以看出,23和252分别和27,256相接近,由此可以推断数列各项分别为11-4,22-4,33-4,44-4,所以未知项为55-4=3121。
【例4】0,9,26,65,( ),217
A.106 B.118 C.124 D.132
【解析】C。数列呈现递增变化,且变化幅度比较大,则可能为多次方数列。进一步分析可以看出,数列各项分别和1,8,27,64,216非常接近,由此可以推断数列各项分别为13-1,23+1,33-1,43+1,63+1,所以未知项为53-1=124。
2、如果题目的数字是正负符号间隔排列的,则可能会有(-1)n出现或是公比为负数的等比数列,一般多以(-1)n形式出现。
【例1】-344,17,-2,5,( ),65
A.86 B.124 C.162 D.227
【解析】B。数列为正负符号间隔排列,可能有(-1)n出现;数列两头的数字较大,中间的小,并且这种变化幅度很大,则可能有多次方出现。而-344,17,65这三个数字和343,16,64非常接近。综合这三个因素可以推出该数列的规律为-344=-73-1,17=(-4)2+1,-2=-13-1,5=22+1,( ),65=82+1,其中-7,-4,-1,2,( ),8是一个公差为3的等差数列,所以未知项为53-1=124。
【例2】2,-7,28,-63,( )
A.126 B.136 C.160 D.216
【解析】A。数列为正负符号间隔排列,可能有(-1)n出现;数列各项数字呈现递增变化,且变化幅度比较大,则可能为多次方数列;而7,28,63这三个数字和8,27,64非常接近,综合这三个因素可以推出数列的变化规律为2=13+1,-7=-23+1,28=33+1,-63=-43+1,所以未知项为53+1=126。
更多内容请继续关注 宁夏人事考试中心网 公务员考试 公务员考试网 公务员考试培训课程