地区网站:
职位: 专业: 学历: 政治面貌:
您的当前位置:国家公务员考试网 > 行测辅导 > 数量 > 正文

鸡兔变形记

2019-08-13 14:08:38 字号: | | 【 打印 】
  本期为各位考生带来了鸡兔变形记。相信行测考试一定是很多考生需要努力攻克的一道坎儿。行测中涉及的知识面之广,考点之细,需要开始做到在积累的同时掌握一定的解题技巧。国家公务员考试网温馨提示考生阅读下文,相信能给考生带来一定的帮助。
 
  更多国家公务员考试复习技巧详见最新版国家公务员考试通用教材(点击购买)
 
  仔细研读下文>>>鸡兔变形记

  鸡兔同笼是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?在历年公务员考试当中,鸡兔同笼问题也多次出现,作为一道有趣而且经常出现在考试中的题型,那就跟国家公务员考试网一起来学习吧!
 
  (一)鸡兔同笼起源篇
 
  解题技巧:几何示意图加行程基本公式。
 
  例1、鸡和兔子同时养在一个笼子里,数了数,它们共有个35头,94只脚.问:养的鸡和兔各有多少只?
 
  【解析】:
 
  方法一:假设35只都是兔子,那么就有35×4=140(只)脚,比94只脚多了140-94=46(只).每只鸡比兔子少4-2=2(只)脚,那么共有鸡46÷2=23(只)
 
  方法二:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少4-2=2(只)脚,那么共有兔24÷2=12(只)。
 
  结论:
 
  解鸡兔同笼问题的基本关系式是:
 
  如果假设全是兔,那么则有:
 
  鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
 
  兔数=鸡兔总数-鸡数
 
  如果假设全是鸡,那么就有:
 
  兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)
 
  鸡数=鸡兔总数-兔数
 
  (二)鸡兔变形记
 
  解题技巧:识别题干中的鸡和兔,利用假设法求解。
 
  题型特征:已知两个主体的指标数和指标总部,求主体数量。
 
  例2、某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。小红最终得44分,做对的题比做错的题多______道。
 
  【解析】:
 
  假设10道题目都作对,那么得分为10×6=60分,比44分多60-44=16分,答对一道题比答错多6+2=8分,一共答错16÷8=2道。答对为10-2=8道,答对比答错多8-2=6道。
 
  例3、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?。
 
  【解析】:
 
  观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数。我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的。所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只)。
 
  鸡兔同笼问题,不管“鸡”和“兔”如何变形,只要抓住题型特征,利用假设法,就可以很快解决这一类题目。

第一时间了解掌握公职类考试资讯、公告等考情,您可以把公务员考试网Ctrl+D收藏,如有疑问请在线 咨询提问