2014国家公务员考试数学运算中的概率问题2
一、排列组合问题特殊解法
排列组合问题用到的方法比较特殊,缘于这些方法都是在对问题进行变形,把不容易理解的问题转化为简单的排列组合问题。
1.捆绑法
排列时如要求几个元素相邻,则将它们捆绑起来视为一个整体参与排列,然后再考虑它们内部的排列情况。
【例题1】 某展览馆计划4月上旬接待5个单位来参观,其中2个单位人较多,分别连续参观3天和2天,其他单位只参观1天,且每天最多只接待1个单位。问:参观的时间安排共( )种。
A.30 B.120 C.2520 D.30240
2.插空法
排列时如要求几个元素不相邻,则把不能相邻的元素插到其他元素形成的“空隙”中去。
【例题2】将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有多少种不同的方法?
A.8 B.10 C.15 D.20
3.插板法
若要求把n个元素分成m堆(每堆至少有1个),则把(m-1)个木板插入这n个元素形成的(n-1)个“空隙”中去可实现上述要求
【例题3】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?
【例题3】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?
A.7 B.9 C.10 D.12
【例题4】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?
A.20 B.12 C.6 D.4
5.分析问题对立面
很多问题分类讨论起来很麻烦,但是它的对立面却很好计算,此时只需要算出总体的情况数再减去对立面的情况数。
【例题5】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?
A.7种 B.12种 C.15种 D.21种
解析:从命题分析来看,题中的事件有多种情况,最直接的方法自然是分类讨论,但类别太多,此时应优先考虑它的对立面,看是不是要比问题本身简单。
“至少1种,至多4种”,结合题干,其反面是“1本都不订”。每种报纸有订或不订2种选择,则共有2×2×2×2=16种订法,反面情况为1种,则所求就是16-1=15种。
二、经典问题模型
排列组合中有若干经典问题分析起来较复杂,我们可直接利用这类问题的结论。其中主要介绍以下三类经典问题:环线排列问题、错位重排问题、传球问题。我们需要记住这些问题的结论。
阅读此文的人还阅读了:
第一时间了解掌握公职类考试资讯、公告等考情,您可以把公务员考试网Ctrl+D收藏,如有疑问请在线
咨询提问。
相关文章