2013年国家公务员考试行测数学秒杀“三叉戟”
无论是国考,还是联考或省考,众多考生把数学运算题目放到最后去做,一部分考生随便选几个题目做一下,还有很多考生因为没有时间直接放弃。数学运算题目虽然有一定的难度,但是如果掌握好几种快捷、简单、高效的秒杀方法,可以简化计算量,提高解题效率。
第一戟:奇偶特性
奇偶特性基本原则
一、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。
二、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。
例题1:(2012年国考)某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?
A.36 B.37 C.39 D.41
解析:根据题目,设每位钢琴老师带x人,拉丁老师带y人,只可以列出一个方程5x+6y=76,则根据奇偶特性,76是偶数,6y也是偶数,则5x一定为偶数,即x必为偶数。又根据题目中每位老师所带的学生数量都是质数,则x既为偶数也是质数,则x=2,代入方程后可以求出y=11,则,根据题目,剩下的学员为,4×2+3×11=41,选D项。此题是2012国考最新题目,可以看出奇偶特性是将来考试出题的一种趋势,广大考生务必掌握。
小结:当题目出现方程或方程组时,且选项奇偶性不同,可以考虑利用奇偶特性进行快速解题或排除干扰选项。
第二戟:整除特性
整除判定基本法则
2、4、8整除判定法则
一个数能被2(或者5)整除,当且仅当末一位数字能被2(或者5)整除;
一个数能被4(或者25)整除,当且仅当末两位数字能被4(或者25)整除;
一个数能被8(或者125)整除,当且仅当末三位数字能被8(或者125)整除;
3、9整除判定基本法则
一个数字能被3整除,当且仅当其各位数字之和能被3整除;
一个数字能被9整除,当且仅当其各位数字之和能被9整除;
11整除判定法则
一个数是11的倍数,当且仅当其奇数位之和与偶数位之和的差为11的倍数;
例题2:(2007年天津)一单位组织员工乘车去泰山,要求每辆车上的员工数相等。起初,每辆车22人,结果有一人无法上车;如果开走一辆车,那么所有的旅行者正好能平均乘到其余各辆车上,已知每辆最多乘坐32人,请问单位有多少人去了泰山?
A. 269 B.352 C. 478 D.529
解析:根据题意,设单位一共x人,车辆为N量,则,22N+1=x,(x-1)/22=N,即x-1能被22整除,选D项。或x-1既能被2整除同时也能被11整除,同样选D项。利用一个条件就可以秒杀题目。
小结:当题目在解题过程中涉及到除法时,要想到整除特性,根据选项进行排除。
第三戟:整除特性
倍数关系核心判定特征
例题3:(2011年国考)某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?
A.329B.350C.371D.504
解析:根据题意,今年男员工人数比去年减少6%,则今年男员工=去年男员工×94%=去年男员工×47/50,则,今年男员工是47的倍数,选A。
总之,通过上述题目,广大考生可以发现利用奇偶特性、整除特性和倍数关系这三叉戟,可以对题目进行的秒杀。国家公务员考试通用教材中除了介绍了上述三种解题方法,还介绍了更多的数学运算解题技巧,建议大家结合教材掌握更多的解题方法,并结合历年真题熟练掌握各种题型。广大考生在平时练习时要注意多有意识的使用这些方法,在考场时才能很好的利用这三种秒杀方法快速解题,从而在考场紧张的时间里在数学运算题目中如鱼得水,从而快速的解答题目。
阅读此文的人还阅读了:
2013国家公务员考试行测:数量关系之几何问题
更多详情请查询:国家公务员考试网(http://ww.chinagwyw.org/)